Языковые модели что это такое и как они работают, обучение, параметры и примеры моделей
В процессе обучения языковая модель создаёт огромный словарь, содержащий все эти очень сложные, выдуманные суперслова. Она создаёт этот словарь, читая весь интернет и создавая суперслова из понятий, с которыми сталкивается. Третий метод основан на запросе к языковой модели о вероятностном распределении значений для колонок, вместо того чтобы запрашивать конкретные значения для каждой строки. Это более эффективный подход, так как позволяет снизить количество вызовов модели и уменьшить вычислительные затраты. Во втором подходе мы запрашиваем модель генерировать значения по одной строке или даже по одной ячейке за раз.
Методы генерации и выборки: создание связного текста
Самое интересное, что эта карта позволяет выполнять математические операции со смыслом. Если двигаться по карте в любом направлении, то можно встретить разные формы этого слова. https://auslander.expert/ Например, на карте языковой модели есть направление, соответствующее тому, чтобы быть актёром. Чем дальше вы продвигаетесь в этом направлении, тем больше вероятность того, что конструируемое вами слово относится к актёру. Самый прямолинейный способ создания синтетических данных с помощью языковой модели — это запросить у неё сразу весь набор данных нужного размера и структуры. В этом методе мы просто передаём модели параметры таблицы, включая названия колонок, возможные значения, ограничения и ожидаемый формат вывода.
ИИ на стадии обучения программированию. Стоит ли?
А своё собственное местоположение мы определяем с помощью широты и долготы. Таким образом, мы можем двигаться в нужном направлении меньшими шажками, чем позволяет сетка из одних только названий улиц. Гораздо более сложная версия вышеописанного — это, вероятно, слово, которое существует где-то в GPT-4, и на основе этого слова модель может составить список вероятных вещей, которые будут следующими. Вы также будете кодировать такие вещи, как часть речи, встречается ли это слово в живом общении или нет, и миллионы других деталей, которые мы с трудом можем выразить словами. В английском языке гораздо больше слов, чем мы с вами представляем. Этот метод оптимален, если нам нужно генерировать много данных, но сохранить контроль над их распределением. Хомский предложил разделить предложение на токены и строить граф взаимосвязей, описывающий грамматические отношения в предложении. В архитектуре трансформеров механизм внимания (attention) действует как эффективный детектор взаимозавистмостей токенов. В статье исследователей из Standford и Facebook AI [2] анализируется механизм внимания в трансформерах, они выявили, что разные головки (heads) внимания специализируются на разных типах взаимосвязей. Например, одна головка может сосредоточиться на взаимосвязи между глаголами и объектами, другая на связях между объектами и предлогами, как показано на Схеме 1. Медик — эмпат, изучающий влияние длительных космических миссий на психику и использующий языковые модели для анализа. Инженер — прагматичный профессионал, который больше доверяет процессам обучения модели, чем людям. “Создай научно-фантастический рассказ, учитывая особенности обучения модели, объемом до 500 слов. Воспринимайте ответы ИИ как черновик или отправную точку для дальнейшей проверки.
Как LLM генерируют текст?
Обращайте внимание не только на генерацию текста, но и на то, как модель это делает, какие ошибки допускает при обучении и где достигает своих пределов. Все эти детали помогут вам расширить горизонты работы с языковыми моделями. Генеративный искусственный интеллект (ИИ) произвел революцию в мире технологий. Хотя существует вероятность получения неточных ответов, есть множество приемов обучения каузальной языковой модели, которые помогут получить наилучший результат. Ниже приведён скриншот компонента AI Prompt с поддержкой RAG, использующего большую языковую модель YandexGPT (LLM) и встроенные функции для улучшенного поиска данных и генерации контекстных ответов.
- Иногда негодуют, когда модели начинают придумывать несуществующие вещи или делают фактические ошибки.
- Все эти процессы позволяют «сжать» опыт до минимума, то есть облегчить задачу его накопления.
- Это может привести к ситуации, когда модель идеально работает с примерами из обучающей выборки, но плохо — с остальными данными.
- Этот метод (синий график) по сравнению со стандартными few-shot-примерами (красный график) помог повысить качество и уменьшить разброс результата.
Для того, чтобы распознавать естественную человеческую речь, используют специальные модели — языковые. Однако исходная архитектура seq2seq имела серьезное узкое место — энкодер сводил всю входную последовательность к единственному представлению — контекстному вектору. (2014) ввели понятие механизма внимания, который (1) использует индивидуальный контекстный вектор для каждого скрытого состояния декодера, (2) основываясь на взвешенных скрытых состояниях энкодера. Следовательно, интуиция, стоящая за механизмом внимания, заключается в том, что каждое входное слово влияет на каждое выходное слово, и интенсивность этого влияния варьируется. Это понятие предполагает определенную ступенчатую структуру восприятия информации и формирования карты собеседника. Упаковано с последними достижениями в области искусственного интеллекта, веб-разработки и технологий будущего. Но невозможно игнорировать моральные проблемы, поднятые языковыми моделями. Развитие диалоговых агентов, технологий перевода, производства контента, обобщения и анализа настроений стало возможным благодаря их способности понимать и воспроизводить человекоподобный язык. Смягчение этих предубеждений и достижение справедливых и инклюзивных результатов являются трудными задачами. Одним из источников беспокойства является возможность предвзятости в материалах, созданных ИИ. Такой подход помогает естественно структурировать входные данные и улучшать качество обучения модели. Языковые модели (ЯМ) — это программные алгоритмы, которые анализируют и генерируют текст на основе изученного материала. Если модель узкоспециализированная, то и данные для нее берут определенного формата (например научные статьи по конкретной теме или комментарии в интернете). Всем известная ChatGPT обучалась на данных очень разного формата, чтобы стать универсальной. Структура зависит от того, какая математическая модель использовалась при создании. Первые языковые модели были статистическими, основанными на вероятностном алгоритме цепей Маркова. И как ни странно, сеть постепенно ошибается все реже, а ее выход все точнее попадет в известный заранее правильный результат. Для создания текста языковые модели используют различные стратегии. RNN работают, анализируя каждое входящее слово, отслеживая информацию из более ранних слов, что позволяет им создавать текст, который является связным и подходящим для контекста. Большие языковые модели — это мощный инструмент искусственного интеллекта, который имитирует человеческую речь с помощью алгоритмов машинного обучения. Он объединяет поисковые и генеративные методы, поэтому создает более точные и релевантные результаты. Haystack помогает бизнесу решать задачи обработки больших данных, улучшать взаимодействие с клиентами и повышать эффективность рабочих процессов. Разработчики могут легко адаптировать фреймворк под свои сценарии использования и создавать приложения на основе LLM. В 2020 году была получена модель размером в 175 млрд параметров, она обучалась на 570 ГБ текстовых данных с контекстом в 2048 токенов. Демонстрацию работы модели лучше посмотреть в этой статье на 28 странице и далее. Llama 2 — это большая языковая модель, способная работать с огромными объёмами данных. Например, Mistal 7B умеет решать несколько задач параллельно и отлично работает в чатботах. Мы описываем эти и другие модели в нашем гайде по промтингу с нейросетями в GPTunneL. Каждый текстовый фрагмент преобразуется в многомерный вектор, где каждое измерение (координата) отражает определённые характеристики текста, например, частоту слов или их значение в контексте. То, как работают языковые модели, раскрывает некоторые глубокие свойства природы языка и реальности. Где p — распределение вероятностей слов, N — общее количество слов https://aihealthalliance.org в последовательности, wi — представляет i-ое слово.